Generalized Bose-Fermi statistics and structural correlations in weighted networks.

نویسندگان

  • Diego Garlaschelli
  • Maria I Loffredo
چکیده

We derive a class of generalized statistics, unifying the Bose and Fermi ones, that describe any system where the first-occupation energies or probabilities are different from subsequent ones, as in the presence of thresholds, saturation, or aging. The statistics completely describe the structural correlations of weighted networks, which turn out to be stronger than expected and to determine significant topological biases. Our results show that the null behavior of weighted networks is different from what was previously believed, and that a systematic redefinition of weighted properties is necessary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Occupancy statistics arising from weighted particle rearrangements

The box-occupancy distributions arising from weighted rearrangements of a particle system are investigated. In the grand-canonical ensemble, they are characterized by determinantal joint probability generating functions. For doubly non-negative weight matrices, fractional occupancy statistics, generalizing Fermi-Dirac and Bose-Einstein statistics, can be defined. A spatially extended version of...

متن کامل

آرام کردن مایع فرمی: جدال با علامتهای فرمیونی غیر مستقیم

 The fermion sign problem is studied in the path integral formalism. The standard picture of Fermi liquids is first critically analyzed, pointing out some of its rather peculiar properties. The insightful work of Ceperley in constructing fermionic path integrals in terms of constrained world-lines is then reviewed. In this representation, the minus signs associated with Fermi-Dirac statistics a...

متن کامل

Quasiboson Representations of Sl(n + 1) and Generalized Quantum Statistics

Generalized quantum statistics will be presented in the context of representation theory of Lie (super)algebras. This approach provides a natural mathematical framework, as is illustrated by the relation between para-Bose and para-Fermi operators and Lie (super)algebras of type B. Inspired by this relation, A-statistics is introduced, arising from representation theory of the Lie algebra A n. T...

متن کامل

Neutrino statistics and big bang nucleosynthesis

Neutrinos may possibly violate the spin-statistics theorem, and hence obey Bose statistics or mixed statistics despite having spin half. We find the generalized equilibrium distribution function of neutrinos which depends on a single fermibose parameter, κ, and interpolates continuously between the bosonic and fermionic distributions when κ changes from -1 to +1. We consider modification of the...

متن کامل

Algebraic generalization of quantum statistics

Generalized quantum statistics such as para-Bose and para-Fermi statistics are related to the basic classical Lie superalgebras B(0|n) and Bn. We give a quite general definition of “a generalized quantum statistics associated to a Lie superalgebra G”. This definition is closely related to a certain Z-grading of G. The generalized quantum statistics is determined by a set of root vectors (the cr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 102 3  شماره 

صفحات  -

تاریخ انتشار 2009